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NOMENCLATURE
a0  function defined by eq 63g n boundary in R0 and also used a generic mov-

II function defined by eq 63h ing surface
b defined by eq 63c Pi velocity of n = dn/dt
b0  function defined by eq 63d ni boundary with i = 0, 1 where ndenotes the
b, function defined by eq 63e boundary where T = (0C and n, the interface

b2  function defined by eq 69b between R2 and a frozen fringe
b3 function defined by eq 69c Po gravity term, 0.098 kPa/cmB fucnctioent d fihed b teq S t Pi pressure of the ith constituent where i = 1, 2
B1  ith constituent of the mixture. Subscriptsi -

1, 2, and 3 are used to denote unfrozen water, P10 value of P1 at no

ice and soil minerals, respectively P1. value of P1 at n
c heat capacity of the mixture defined by eq Pn value of P2 at n,

10c q heat flux in the mixturebycomduction defined
co defined by eq 41c by eq 8b
ci heat capacity of the ith constituent q+ limiting value of q as 4 approaches n, while 4

d unit of time, day is in R,

di density of the ith constituent q limiting value of q as 4 approaches n, while k

A mass flux of the ith constituent relative to ii R 2

that of soil minerals where i = 1, 2 qj heat flux in the ith constituent by conduction

fqj mass flux of the ith constituent relative to r rate of frost heave

that of soil minerals in Rj where i = 1, 2 and R0  unfrozen part of the soil
j =0,1,2 R, frozen fringe

hi heat content of the ith constituent R2  frozen part of the soil
lo function defined by eq 56a Rm region in the diagram of temperature gradi-
I function defined by eq 56b ents where an ice layer melts
12 function defined by eq 59b R, region in the diagram of temperature gradi-
k thermal conductivity of the mixture ents where the steady growth of an ice layeroccurs
ki thermal conductivity in Ri where i = 0, 1, 2 R: boundaryrbetweensRandR

k11 limiting value of k2 defined by eq 40h 8 region in the diagram of temperature gradi-
k2  limitingvalue ofk2 defined byeq48 ents where the steady growth of an ice layer
K0  hydraulic conductivity in the unfrozen part does not occur

of the soil s defined by eq 32b
K1 empirical function defined by eq I where i= s defined by eq 31b

1,2 S defined by eq 7le
Kil limiting value of Kt as 4 approaches n, while S. definedbyeq70d-70gwhere i = 1,2, 4

4 is in Ri, i = 1,2
K10 limiting value of Ki as 4 approaches no while t time

4 is in R1, i = 1,2 T temperature of the mixture
L latent heat of fusion of water, 334 jg-I T1  temperature at ni where i = 0, 1
m boundary where the content of unfrozen T, temperature at no and used also as a reference

water is negligible temperature
Mt name of a model defined in Part I where i vi velocity of the ith contituent where i = 1, 2, 3

1,2,3 v4 v, in Rý where i = 1, 2,3 and j=O, 1, 2
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V definedbyeq20 At fctiondefinedbyeq 23f
V, VinlRwherej=O,1,2 pt defined by eq 24e
M defhned by eq 35b where i = O, 1, 2 po defined by eq34a
wq defined by eq 35a where i = 0,1 and j =0,1, v defined by eq 22h

2 V defined by eq8
X spatial coordinate v, defined by eq 23i
X defined by eq Al V VatT=- T
Y definedbyeqB4 t coordinate defined by eq 16
Y1  defined by eq B6 t frot heave ratio defined by eq 72
z defined by eq 10b xo defined by eq B2
z, defined by eq 44c x, defined by eq B3
o6 absolutevalueof the temperature gradientat Pi bulk density of the ith constituent

no p ii ý
a, absolute value of the limiting temperature a e

gradient as 4 approaches n, while 4 is in R2, o effectivestressdefinedbyeq60b
definedby eq47 oR defined by eq 59a

P9  defined by eq 41b *0 empirical function of T defined by eq 55a

P defined by eq 46 #01 valueof 0atT=T1

y constant, 1.12 MPa OC-1 *1 empirical function of T defined by eq 55b

8 thickness of a frozen fringe #it value of #1 at T = T,

80 defined by eq 54c k empirical function of T defined by eq 55c

£ defined by eq 58b *21 value of %at T= T,
iq defined by eq 40f V some function of x and t

81 volumetric content of the ith onstituent IlI jump of v defined by eq l1b

Ai rate of supply of mass of the ith constituent y* defined by eq 12b
per unit volume of the mixture 4r defined by eq 12a

ki rate of surface supply of mass of the ith con- * superscript used to indicate the value of any
stituent per unit surface of the mixture de- variable evaluated when a point (tl, a()) in
fined by eq 14a the diagram of temperature gradients is on

A function defined by eq 26f R
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Traveling Wave Solutions to the Problem
of Quasi-Steady Freezing of Soils

YOSHISUKE NAKANO

INTRODUCTION
The results of our mathematical and experi-

We will consider the one-directional steady mental study on the steady growth condition of an
growth of an ice layer. Let the freezing process ice layer were presented in the three previous
advance from the top down and the coordinate x reports (Nakano 1990, Takeda and Nakano 1990,
be positive upward with its origin fixed at some Nakano and Takeda 1991). These results dearly
point in the unfrozen part of the soil. A freezing show that the model M1 accurately describes the
soilinthisproblemmaybe considered to consistof properties of a frozen fringe during the steady
three parts: the unfrozen part &, the frozen fringe growth of an ice layer under negligible overbur-
R, and the ice layer R2 as shown in Figure 1. The den pressure. The model M, is the frozen fringe
physical properties of parts R0 and R2 are well where ice may exist but does not grow during the
understood, but our knowledge of the physical steady growth of an ice layer and the mass flux of
properties and the dynamic behavior of part R, waterAf is given as
does not appear sufficient for engineering applica-
tions. f 1 =-_ 1?•.L K2• (1)

Iii TUSTm

where x is the space coordinate, and K1 and K2 are
the properties of a given soilthatgenerally depend

Fý on temperature T and the composition of the soil.
Nakano (1990) has shown that the velocity

io(= d no /d t) of the frost front is nonpositive and
vanishes when the steady growth of an ice layer

n, T - occurs. In this work we will study a case in which
R, A0 is a given negative constant and the steady

growth of ice-rich frozen soil, instead of an ice

nT -To- 0 0 { layer, takes place. In such a case the frozen fringe
R, also moves downward with a constant speed.
Ice may or may not exist in RI. However, if a
certain steady distribution of ice is present in Rj,

0 B0  then the growth of ice must occur in R, because
unlike the case of a steadily growing ice layer, the
velocity of soilparticles inR relativeto niodoesnot

__ vanish when i 0 < 0. Because of this we must
modify the definition of M1 sothat ice may grow in

Figure 1. Steady growth of ice-rich frozen soil. R, when i 0 < 0.



The objective of this work is to show that there given as (Nakano 1986)
exists a traveling wave solution to the problem of
steadily growing ice-rich frozen soil and that this
solution is reduced to the solution to the problem "(p h1i) f•--(pihivi)--qi, i = 1,2,3 (6)
of a steadily growing ice layer obtained in the t Xax
previous report (Nakano 1990) when the velocity
no vanishes. We will also show that the condition where pi hiis the heat content of the ith constituent
of a the steady growth of ice-rich frozen soils per unit bulk volume and qj the heat flux by con-
under given hydraulic conditions and applied duction.Weassumethattheconstituentsarelocal-
pressures is uniquely determined by a set of two ly in thermal equilibrium with each other, Le., that
physical variables, such as a0 and al, used in the the constituents have locally a common tempera-
previous reports. ture T ("C). Under such an assumption, the heat

content h1 is given as

BASIC EQUATIONS h= c1(T - TO) (7a)

We will treat the soil as a mixture of water in the
liquid phase B1, ice B2 and soil minerals B3 with h2= L + c2(T- TO) (Tb)
bulk densities pl, p2 and p3, respectively. Ifdi is the
density of the ith constituent, then the volumetric h3= c3(T - TO). (7c)
content 0i of the ith constituent is given as We sum up eq 6 for i = 1, 2,3 to obtain the heat

0i = pi/di. (2) balance equation of the mixture given as

Itisclearthatthesumof0ishouldbeunity, namely a- i pihi - pihivh - q (8a)
a~t ax ax

01 + 02 + 03 = 1. (3) where q is defined as

We will assume that the density of each constitu-
ent of the mixture remains constant. Thus, the re- q = z qi. (8b)
suits of this study are accurate if the deformation
of each constituent is negligibly small, regardless It is known that qi depends on the bulk density p,.
ofoverburden pressure. The drydensity of the un- the thermal properties of ith constituent, the tem-
frozen part of the soil is assumed constant during perature gradient and the way in which the ith
the freezing proce. constituent is distributed in the mixture. For theWe will assum e that the unfrozen part of the soil .sk fsmlct w ilap oi aeqa
is kept saturated with water at all times by using sake of simplicity we will approximate q as
an appropriate device of water supply. The bal- q- k aT (80
ance of mass for the ith constituent is given ax
(Nakano 1986) as

a a where k is the thermal conductivity of the mixture
pi =- (pivi) + Xj, i = 1,2,3 (4) that generally depends on the thermal properties

it a& of each constituent and the composition of the
where v, is the velocity of the ith onstituent and • mixture.

is the time rate of supply of mass of the ith constit- Using eq 4, we reduce eq 8a to

uent per unit volume of the mixture. It should be pi -hi hj - p1Tij hi -- q.(9)
mentioned that the summation convention on in- ai i- ax ax)
dex i is not in force here, so that (piv.) represents
only one term. Since none of the constituent is We will assume that ci and L in eq 7a, 7b and 7c
involved in chemical reaction, we have do not depend on T. Choosing To to be 0 (*C) and

%+A2=0 and X3=0. (5) using eq 7a, 7b and 7c, we reduce eq 9 to:

The balance of heat for the ith constituent is ax

2



where z is defined as conservation law of either heat or mass must be
violated if one of these conditions does not hold

Lz = - cL7 +(c - c2) TX•2 - •• i ci i7 (10b) true at n.
at i at Quasi-steady 

problem
c = cIp + c 2p2 + C3p3 . (lOc) We will consider a special case in which a frost

frontx = no(t) moves with a constant velocity tio. In
We will now consider a moving surface whose such a case we will seek a quasi-steady solution to
location is given as the problem described by eq 4 and lOa in the frrn

of a traveling wave. We will introduce a new
x = n(t)<S m (t). (11a) independent variable 4 defined as

In a neighborhood of n(t) we choose two moving = x-iot (16)
surfaces n-(t) and n+(t) with n-(t) > n(t) > n+(t). The
jump of a quantity W(xt) at n(t) is defined as where ho = dAio(t)/dt. Using eq 16 we reduce eq 4

to
1$= a- - W+ (11b)

d P1 (vi - ) = .i, i = 1, 2,3 (17)
where T

For the sake of convenience we will define new
n--= l+i (12) dependent variablesf1 andf 2 as

N+ = Jim W (12b) h = P1 (VI - v 3) (18a)
n+ --4ln

f2 = P2 (v2 - V3) (18b)
It is clear that I V I = 0 if W is continuous at n(t).

Jump conditions at n(t) under the assumption It is easy to see thatA (i = 1, 2) is the mass flux of
of a continuous T are given (Nakano 1986) as either B, or B2 relative to the mass flux of soil

particles. Using eq 18a and 18b, we reduce eq 17 tohm oV = INl A + xi i = 1, 2, 3 (13a)
(plVI'= -fl' - X,2 (19a)

where X• is the surface supply of the mass of the ith (p'V)' =0 (19c)
constituent defined as where primes denote differentiation with respect

n- to 4 and V is defined as

X. lim + i dx (14a) V= v3 -,. (20)
?+, n--+n +

and it is assumed to be continuous and is defined Using eq 16, 18a and 18b, we will reduce eq lOa
and lOb toas

S= dn (14b) q'= - (kT' = LN + z) (21a)

dt Lz =-(clfj+c2f2 +cV)T' + (cl-cc2)XT. (21b)
From eq 5 we obtain

Traveling wave solution

il + i2 = 0 and X3 = 0. (15) We will derive a traveling wave solution that
satisfies the jump conditions, eq 13a and 13b, at n1,

The jump conditions, eq 13a and 13b, are necessary and thebalance equations of mass and heat, eq 19a
and sufficent conditions for the conservation law 19b 19c and 21a. We will assume that the bound-
of heat and mass to hold at n. In other words, the aries n, no, n, and m in Figure 1 move with the same

3



constant velocity, namely: Wi+ and that of V, as 4 approaches no with 4 > no by
VW' as shown in Figure 2. Our immediate task is to

?i = tio = Iii = A. (22a) reduce thenumber ofunknown variables appear-
ing in this figure by using the jump conditions and

The pressure P1 of water is assumed to be a given the balance equations of mass and heat.
constant at n as Integrating eq 19a, 19b and 19c from n = fj

to m ", we obtain
P i(n) = P u. (22b) f•+ pi•½+=lfj+ p;2V-- A? (23a)

According to M1 (Nakano 1990), the mass flux of
waterf11 in R, is given as 2+=pi2 - + A+ (23b)

fh1=-Ki1P•--K2- fortinRi (22c) AVW p iV2 (23c)

where
K/K12-- as fil -+ 0 (22d)

W= Ph - Iio =r- no (23d)
lir PI(4) = P2(n) = P21  (22e)
4-ni V2 =v 2 - "0 (23e)

where P2 is the pressure of the frozen part of the Al = (23f)
soil R2 and y is a constant with the value of 1.12i
MPa OC-.

We will also assume that the composition of the where it is assumed that the temperature Tm at =
soil is continuous and X2 vanishes at no as m islowsothatfrand pý2 vanish. This implies that

v~f is equal to the rate of frost heave r. Eliminating
IpI = 0, X2 = 0 at no. (220 At, we will reduce eq 23a, 23b and 23c to

The assumption of eq 22f implies that the velocity m
vand the flux ofheat q are continuous at no. We 2 12 22 32 12
will assume that the movement of ice relative to
soil particles is negligibly small everywhere, that R2

is

f2 = 0 in R (i = 0,1,2). (22g) n V P1 2 P;2 112

As we discussed (Nakano199W), when the steady V1  p•, P•, p. t1. A÷
growth of an ice layer occurs, the pressure P1 is
continuous but the first derivative dP1/dx of P, R V f
maybe discontinuous atnD. Therefore, thebound- 1 1' 11 21 Psit f1 1 . A
ary no is generally a free boundary where the first
derivative dP1/dt may be discontinuous. Finally
we will assume that p, is given as V-, P-. P, P.

PI = p3v(T) (22h)

wherev(T) isa givenempiricallydeterminedfunc- R o P30,
tionof Tthatis assumed tobe approximatedby the Vo' PlO flo
equilibrium unfrozen water content at T.

We will now denote the values of viand V, for
instance, in the part RIj = 0,1,2) by v. and V, n
respectively. We will denote the limiting value of
VI, for instance, as 4 approaches n, with 4 < n, by Figure 2. Variables in R0, R, and R2.

4



S(VV;+ PO Kwi (23g) ,-jL+(C1- T ._)

PhW-i1# V 2- (23h) Integrtng eq19a 19b and 19cruvm4-no to ,we
obtain the following equations given as

where v, is defined as:
fn + V1 3i•i fjo + pioVj-- A (26a)

v, = v(T1). (23i)
pV = A (26b)

Using eq 3, we obtain
p31V1 = BVJO- (26c)

l~ = d 2 (I - d 3 ' l ~ ) (2 3 j)

where
p= d2[l - (V101- + dA)r p 2 ]. (23k)

V = v3•1-•A (26d)
From eq 23f, 23i and 23j, we obtain

Y-= Vo =- ,io (26e)

Vt= [1 + vi (d2 -d jl) pi j V2 -+ d2 Aj2. (231)

It is easy to see that all variables at m+ are deter- A(4)= l)W4, 4 > no. (260
mined if all variables at n" are known. Using eq J.O
13a at nj, we obtain Using eq 3, we obtain

AI+i + pt =f2 + Pi2Vi-+ i 2  (24a) vp3i d,-I + p2. d2n + P•3 = 1 (26g)

A V' = 62V-X 2  (24b) plo dil + pI3o d3 = 1. (26h)

p1 W= P;2V2 (24c) Taking limits of eq 26a, 26b and 26c as 4 approach-

where es nj, we obtain

V=q-o (24d) f+v Ip;,. V'+ A+ = flo + pIo Vo (27a)

For the sake of simplicity, we will introduce a new Vj+ -A+=0 (27b)

variable p defined as p•i V = P3o Vo. (27c)

P2 = AP A • (24e) Comparing eq 25a, 25b and 25c with eq 27a, 27b

Using eq 22h and 24e, we will reduce eq 24a, 24b and 27c, respectively, we obtain
and 24c to f• + Vl '=fo+pIo Vo-a+-i2 (28a)

r11+v1p1'=hf +v1Pp1V'2 +X2 (25a) 1:2V2-= A++ 2  (28b)

P11W. = PiVi - i2 (25b) RV2 = (P30 /M) Ao (28c)

Vi = RVl'. (25c) Let us assume for the time being that Ao, v, (or TI)

Using eq 3, we obtain and i2 are given. It is easy to see that the left-hand
terms ofeq28a, 28b and 28ccontain fourunknown
variables at n- in R2; V2-, p2, I. and fl-b while the
right-hand terms of these three equations contain

v25e) pdI+unknown variables in the combined region ofRo +
R1. Since pj2 and are related by eq 25d, all the

From eq 13b, we obtain unknown variables at n- listed in Figure 2 are
uniquely determined if all the variables in R0 + R,
listed in Figure 2 are known.

5



From eq 27a, 27b and 27c we find that these 6-2 =v W3+1 (33d)
three equations contain five unknown limitimd
values, VIt, p;,, fp'if and A*. Since ph and isi p. = d,[1-(vl-' + d- p] (33e)
are related by eq 25e, we have actually four un-
known limiting values and threeequations. There- fG = fil - i2. (33f)
fore, if one of these four unknowns is given, then
all six unknown limiting values at n? listed in Using eq 31a, we will reduce eq 33f to
Figure 2 are uniquely determined. Choosing V1 to
beanindependentvariable, wewillwriteallother fi =fio + s+Vo-d 2 (V+- vo) - K2. (339)
limiting values as follows. First from eq 27c, we
obtain: In actual experiments, Pl and ew are given as

initial conditions. If V0 , v, (or T1), 2,fwlo and V1 are
P•, = iao ( Vo ) (29a) given, then all other variables are uniquely deter-

mined. Since A is difficultto measure experimen-

ol = vI PMo( NO ,vt) (29b) tally, it is convenient to introduce a new variable
Io defined as

From eq 25e, we obtain: PO=A4=(/i (;/W t (34a)

Using eq 23h, 25c and 27c, we will reduce eq,34a to
From eq 27a and 27b, we obtain (4b)

A&, =fio + piovo - (Viol + AM) (30a)
Using eq 24e and 25c, we will reduce eq 23 to

A+ PI VI+'V(30b Iii.N + v d -I -dii) gip Vi] t+ fii. (34c)
Substituting pl in eq 30a by eq 29c, we will reduce
eq 30a to Substituting fj in eq 34c by eq 33g and using eq

33b, we will reduce eq 34c tof+ = f lo + s + Vo - d 2 (1"1- V D) (31a) V -=d 'i ol +( ~ i) p o W

where s* is defined as Combining eq 34b and 34d, we obtain
s + = (I - d'd 2) (pio - v ip3o) (31b) =Vofd 'f o+Vo l+(di1-di1)] pio) '. (34e)

Unknown variables, P3f Pu' P21, fhi and A are
givenbyeq29a,29b,29c, 31a and3Ob, respectively, From eq 23d and 34d we obtain
in which superscripts + are deleted and v, is re-
placed by v. For instancei, is given as r = di~fuo+( 1 -di') poVo (3401

fI = -'O + sVo - d2(V1 - Vo) (32a) Using eq 34f, we will reduce eq 34e to

where s is given as po = Vo(r + Vo Y-. (34g)

S= ( - Idd2) (P1o - vp30o). (32b) We will introduce new variables, w4 and w,, de-
fined as

Using eq 28a and 28c, we will write unknown
variables at nj" as wi, = 4 i =1,2 and j = O, 1, 2 (35a)

V-=d-1 +Vt (33a) wj = wI1 + jW = o, 1, 2. (35b)

S= W(v. + d 2-' i)- (33b) Itisclearthatw# isthecontentoftheithconstituent
in J and that ul is the content of ice and unfrozen

62 = PA• (33c) water in 1. We will refer to 9 as the total water

6
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content. Using w1, we will reduce eq 32a to When Vo > 0, we obtain

fAl=fAo+P 3o(Wo- W)Vo. (36a) fu>fioandfji>O, ifVo>Oand4>nG (39b)

Using eq 26a, 26b and 36a, we obtain It followsfrom eq39b thatf1 1 isgreater thanfloand
increases with 4. This special case does not appear

A = p30 (w1 - v)V0 . (36b) tobe probable because the mobility ofwatershould
not increase with increasing 4.

We will now examine the behavior off,. From eq Next we will consider a special rule that the
32a we obtain total water content w, is kept constant at w0.From

eq 36a and 33f we obtain:
fl, =Afo + sVo - d2v31. (37a)

fi = o = X.2 (40a)
Using eq 26c, we will write v31 as:

From eq 37a we obtain
v31 = d2 sVo. (40b)

Since T decreases as 4 increases from no to nj, s is
positive in R1 and increases with 4. It is anticipated From eq 29a we obtain
that P31 may decrease with 4 but does not increase
with 4. Since V0> 0, from eq37b we find that v31 > P31 = p3(1 + d21 44. (40c)
o and v 1 : 0in R1.Therefore, from eq37a we obtain

We will reduce eq 36b to
flo + s+Vo0f1Zfo -dvi (38a)

A = p3o(wo- v)Vo. (40d)
where

It follows from eq 40b and 40c that v31 increases
v11 = (p30 - P;1) Vo /4I. (38b) with 4 while P31 decreases with 4 for a given V0.

This second special case appears more probable
Ice-rich frozen soil than the first case because the mass flux of water

We will focus the remainder of our analysis on should not increase with increasing 4. We will
a special case in which the frozen part of the soil study the second case below. The empirical func-
contains a significant amount of ice. For such a tion v(T) in eq 40d is known to be an increasing
case the mobility of water in R2 is anticipated to be function of T with v(O) = w0.We will assume that
much less than that in R1 and we may neglect fd. v(T) possesses a continuous first derivative.
It follows from eq 34a, 34g and 36b that the values The thermal conductivity k, of R, depends on
of p, VO and A remau i small. thecompositionofRI.Ourexperimentaldataindi-

The exactcomposition of R, isnotknown.How- cate that k, is a nondecreasing function of 4. We
ever, it is a generally accepted view that P31 does will approximate k, by a linear function of 4 as
not change significantly from P30- The results of
our analysis on the data of Tomakomai silt (Na- k1(ý) = k[1 + ti(4 - no)], nj > : no (40e)
kano and Takeda 1991) appear to support such a
viewpoint. Assuming the existence of a certain = (kI- k0)/(8k0)>0 (40M
rule for P31, we will explore probable rules below.
Suppose that such a rule is known, then two of five 8 = nl - no (40g)
independent variables, Vi and X2, are uniquely
determined byeq 26c and 33g, respectively, when limr kl(t) = k1l k2l (40h)
three remaining independent variables, V0, T, and 4-4, .

fAo, are given in this case. Let us consider first a tnI
special rule that P31 is kept constant at p3o. In such
a case v31 vanishes and eq 37a is reduced to where k2l is the limiting value of k2 when 4 ap-

proaches nj while 4 is in R2. Under assumptions
Af =fo + sV0 . (39a) described above we will study thermal and hy-

draulic fields below.
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Temperature T(7) Using eq 41b and 44d, we will reduce eq 44c to
We will seek solutions T(4) to the balance equa-

tion of heat given by eq 21a in RO and R1 .We will zI = cIA+poVo [c3 + czwo + (ci -c2)v]. (44e)
begin with Ro. Sincef= f41 ,h = 0, V= V 0and X =
0, from eq 21a and 21b we obtain Neglecting the last term in eq 44e, we will reduce

eq 44b to
rT- Pr = 0, R in Ro (41a)

•o= (clf1o + coVo)/ko (41b)
where P, is defined as

where ko is the thermal conductivity of Ro and co is
defined as h = kojciffo + p3a Mo (c3 +C2 wo)]. (46)

cO = cIP10 + C3p30 . (41c) We will reduce the jump condition (eq 250 to a
SiWC, integrating eq 41a, we obtain somewhat more convenient form by using eq 44b.

Since T ) 0,iWe will write the limiting value q- when 4 ap-

7t() = cto 1{ 1 - exp [- o(no - Q)] (42a) proaches n, while 4 is in R2 as

r(§) - aoexp [- Po(no - )] (42b) q- = k2la1  (47)

where ao is defined as k2i = lim k2(4) (48)

ao = -rQ) (42c) Unk

Next we will seek a solution in R. First we wl where k2 is the thermal conductivity of R2 and a, is
Net wthe absolute value of the limiting temperature

rewrite eq 21a and 21b by using eq 26a, 26b and gradient as t approaches n, while 4 is in R2.Using
26c. SinceAf A ffiJ a = 0 and A = A'in this case, we eq 44b and 47, we will reduce eq 25f to
will reduce eq 21b to

Lz =-(cflo + cV)r + (c1 - c2)OA. (43a) k21a1 - + kPoT = (fjo + A+) [L + (c, - c2)T1
(49)

Using eq 26a, 26b and 26c, we obtain A+ = (WO- v1)p3V 0 . (50)

cV1 =- (cl -c 2)A +coVo. (4b1) As shown in Appendix A, eq45 has a unique and

Using eq 43b, we will reduce eq 4 to decreasingsolution for n, >42>no. Fora special case
in which the following condition holds true,

Lz=- (cfO + coVO)T' + (cl - c)(AT)'. (43c) q8<1 and N18<1. (51)

Using eq 43c, we will reduce eq 21a to We found that the conditibn, eq 51, holds true

q' r + (C -C2)(A)'(44a) when the steady growth of an ice layer occursq" - k~oT + ct c2(AT' +LA' (4a) (Takeda andNakano 1990).Wheneq51 holdstrue,

Integrating eq 44a from 4 = no to f we obtain we may use an approximation (Nakano 1990) giv-
en as

q=-k = or-zjT + L(44b) x = I + Pi(4-no). (52)

zt = koPo - (c, - c2)A (44c) We obtain an approximatesolution (App.B) given

where k, is the thermal conductivity of R, and A is as

given as (o-) V 0- •-IV)

A =(wo -v) p3OV. (44d)
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r *

7(OJX -z+ z.(v + X-1 kv) T1 -0

- p~~R#17) rIV (Kio /KO (ki /kokiT T<ftO (3) *T (55b)

It is easy to see from eq45 that the temperature T(4)
isuniquely de.emine if Vfo,, oo and4 are given.T
Hence, the temperature T7 at n, is determined by1 T0 =0
Vo,AJo, eo and 6. Suppose that Vof 1•o, ao and 8 are 42T) = i T

given, then T, is determined by eq 45. Once Tis Tr (v /woXKio /Ki) (ki /ko)dT T < 0
known, then a, is determined by eq 49. As we fJ (55c)
described in the preceding section, all variables
listed in Figure 2 are determined by Vo, T, andflo where Klo and K20 are the limiting values of K, and
if P• obeys a certain known rule in R1 This implies K2, respectively, as 4 approaches no while 4 in Rl.
that four independent variables must be given in Choosing Tas an independent variable, we will
order to specify the condition of freezing. We will write the two integrations in eq 54b as
choose oro, a1 ,f10 and Vo to be independent vari-
ables. M

Pressure p~, mo- KI1 K2 r'dt = K K2o Ti*oi (56a)

When the mass flux of water is givenbyeql,we
have found (Nakano 1990) that the following equa- n- Tj
tions hold true in Rl: Ilia f- K I dt =o (KI T')-dT (56b)

`o= Pi.- [(fio/KDo) + po] (54a)
where o = %(T1). We will write eq 54b as

P21 = Po- K"IKT' d4 -fio K1' 1 d4 (54b) P21 = P1o- fio/1• (57)

Using eq 55b and 55c, we wil reduce eq 56b to
where P1o = Pi (no). P. = P1 (n), (App. '

n = some point in R0
Ko = hydraulic conductivity in Ro I = -(XIKIOP[11T1(1 -e) + WOiXI 21 TI I
Po = gravity term that is equal to the den-

sity d, multiplied by the gravitation- (58a)

al acceleration. 
TI

So is defined as = Ti + (.ý-ii4 idT] (58b)

8o=no-n>0. (54c) where #11 = *1 (TI) and ki = 42 (TO).

We will assume that P21, P1. and 8o are given. Using eq 56a and 58a, we will write eq 57 as

In order to reduce eq 54b to a simpler form, we
will introduce the following three dimensionless oF= P21 - P10 = - T112  (59a)

quantities 12 K1 K29 Eofl - (Xl Klo)-
T1=0

*O(T) = T Using eq 54a, we obtain
To (KioM) (K2 /K2o) dT T < 0 =1

( i)+po~o+ oKjo (60a)

9 P21 - Pl. (60b)

9



- Ti=( + Po 80 + 8o Kolfio)/ 12. (60c) Condition of steady growth
Since the mass flux is givenby eq22c, the fluxfjo

Since the composition of the freezing soil is as- in a neighborhood of n1 is given as
sumed to be continuous at no, we may expect that
the limiting value K10 and Ko should be equal hto = - Ki P(nj+) - Kii T'(nj+) (63a)

Ko = K1o. (61a) whereKii, P;(w+), K2i and Tinh) arethelimit-

ingvaluesofKi, P(),/ (2 and T 14) ,respective-
Neglecting the gravity term, we will reduce eq 60c ly, as 4 approaches nj while 4 is in R1 .From eq 53b
to we obtain

- TI = (0 + 80/6f0)/12. (61b) 7lnt+)=- aob (63b)

Whenflo vanishes, from eq 61b we obtain b = (I + 11)4 (bo + b18) (63c)

(Y = -(K,. /Ko) *ol Ti, if ho = 0. (61c) b = aor (zI- Xovi-zoxiPtVI) (63d)

The generalized Clausius-Clapeyron equation bl=% Io Pt(X2i--X o•Ic v). (63e)
(Edlefsen and Anderson 1943), which was proven
empirically by Radd and Oertle (1973), is given as Similarly from eq 53a we obt

i=-yTI, ff/o = 0. (62a) T, = - a 0ao + a18) (630

Comparing eq 61c with eq 62a, we obtain ao=-% a Iv (63g)

"Y= (K2o/,K)•oi, iffo = 0. (62b) ai=a%1 (xi - xoxj ii P) (63h)

It follows from eq 22d that eq 62b holds true and where Vi = v(Ti).
that we have Using eq 63b, we will reduce eq 63. to

y = K20 1KO (62c) fio = - Ku P; (nt) + bKn ao. (64a)
1=, iffio = 0. (62d) Neglecting terms representing sensitive heat, we

will reduce eq 49 to
It should be noted that eq 62c should hold true
regardless offlo. Using eq 62c, we reduce eq 59b to k0% + L/jo = k21 al - P30 V oL(wo - V). (66)

12 = 'o01 - (xi Ko)-1 Now we will recall a specialcase studied (Nakano
1990) where Vo vanishes and the steady growth of

fo [*1(1 -E) + wO10o• 2]O. (62e) an ice layer occurs. In such acase, so vanishes and
eq 63c is reduced to

For a special case in which c is negligibly small, eq
61b is reduced to b = (I + q1)-l (I + 01) (65a)

- T7 = (8o0KJi-o )/ 12. (620 Pi = - ktocifio. (65b•)

At the end of the preceding section we had four Also eq 64b is reduced to
independent variables, crc, a1,f1 and VD. Since we
have derived another equation, eq 60c, we now ko0q + Lfo = k21c 1 . (65c)
have three independent variables, ac, a, and V0.
We will derive one more equation below in order It was found (Nakano 1990) that the steady growth
to reduce the number of independent variables to ofan ice layer occurs under the conditions given as
two.

(k2l /Ak)coc > a0  (66a)
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RM Suppose that eq 68 does not hold true. Since
mR., Pi(l)< 0 in a neighborhood of n, in RIthere

exists a point 1 in this neighborhood such that

R. / PA() > P21.Also P21 > P10 because P21 O andf°
/ > 0. Since Pl(k) is continuous in RI, there exists at

a 0  least one point k2 with k, > 42 > no such that P1 (W
= P21.This implies that another ice-rich frozen soil
layer can exist in R,. This is obviously comtradicto-

/ ry to our assumption that there isno ice-rich frozen
soil layer in R1.

/ Ru When eq 68 holds true, from eq 64a and 64bwe
obtain

ao 2: k2 W b•• -al-b3 (69a)

Figure 3. Temperature gradients a, and or& where b2 and b3 are defined as

el (nt ) > 0. (66b) b2 = ko + LbK21  (69b)

Using eq 64a and 65c and combining eq 66a and b3 = b21p9oVoL(wo - v4,) (69c)
66b, we obtain

In Figure 3 we will draw curve 1 given as
(k2 /k)al> > k21(ko + LbK2 1)- a1. (66c) k 1

ot0 = k2i b21 ai - b3. (69d)

The region &, in Figure 3 satisfies eq 66c and the
steadygrowthof an ice layer occurs in ,R. LineR** Since Vo > 0, curve 1 must be in Ru and converges
in Figure 3 is given as to R. when V0 approaches zero. When Vo vanishes

and the steady growth of an ice layer occurs, a line
- (k2l/k 0)a1 . (67a) of constant fo is parallel to RP:, such as broken

line 2 in Figure 3. It follows from eq 64b that line 2
Line R** is the boundary between R, and Rm is still the line of constant flo except in Ru where
where an ice layer melts. The boundary R: in line 2 is the line of constantflo + P3oVo(wo- v1 ).
Aigure 3 is given as It follows from eq 69d that the distancebetween

-1 curve I and R: increases with increasing V0 From
ao= k2 i(ko + Lb*K2*) al (67b) eq34gwefindthattheicecontentinR2 decreases

with increasing V0.The condition eq 69a implies
where superscripts * are used to indicate the value that the steady growth of frozen soil occurs in the
of anyvariable when apoint(a 1 1N)belongstoR*. region bounded by curve 1 and R*. Since Vo is an
Since b* and /Il generally depend on a0 and a, arbitrary positivenumber, eq69a alsoimplies that
the boundary R* between R. and Ru, where the the steady growth of frozen soil occurs every-
steady growth of an ice layer does not occur, is a where in R.. However, the steady growth of ice-
curve stemming from the origin. From eq 66b we rich frozen soil is anticipated to occurin the part of
obtain Ru not far from the boundary R,*.

Suppose that a point (q,1 0̂ ) in R, is given; then
Pj (ni) > 0 inRe (67c) we can find V0 that satisfies eq 69d. At the end of

the preceding section we had three independent
P1 (nf) = 0 on RS*. (67d) variablesaoa and VO. Sincethesethreevariables

are related by eq 69d, we now have only two
Now we will examine the case in which V0 is independent variables, oand a1. In other words,
positive and the steady growth of ice-rich frozen we have found that the condition of the steady
soil occurs. First we will show that the necessary growth of ice-rich frozen soil is uniquely deter-
condition for the steady growth is given as mined by two independent variables, XD and a1,
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under a given hydraulic condition and overbur- Si - bMKA (71a)
den pressure. We have shown that there exists a
traveling wave solution containing two indepen- S2=0 (71b)
dent parameters, a0 and ap, to the problem of
steadily growing ice-rich frozen soil. S3 - b "Kji S (71c)

DISCUSSION S4 = 0 (71d)

One of the outstanding questions among re- S = k2 d(ko + Lb*K'x . (71e)
searchers of frost heave has been the relationship
between the rate of frost heave r and the speed of Itfollowsfromeq7la, 71b, 71cand7ldthatthe last
a frost front V0.A significant amount of effort has term on the right-hand side of eq 70b (or 70c) is
been made to determine empirically this relation- negligible in comparison with the first term in the
ship under the hypothesis that r is uniquely deter- right-hand side of eq 70b (or 70c) when Vois much
mined by V0. The empirical relationships between less thanfloand a1 > 1.0 °C cm-l for i = 1,2. It is easy
r and V0 reported in the literature sometime dis- to find that S1, S2 and S3 are positive, but the sign
agreewith (orevencontradict) each other(Takashi of S4 is not certain.
et al. 1978), and there appears to be no consensus According to the results of our analysis, we
among researchers. This situation casts a serious have found that the rate of frost heave r is not
doubt upon the validity of the underlyinghypothe- uniquely determined by the speed of a frost front
sis that r is uniquely determined by V0. V0 alone and that the relationship between r and

We will show that r is not uniquely determined V0 strongly depends on ac (i = 0,I). To examine the
by V0 if M, and the assumptions used in our validityofeq70bwe will use reportedexperium-
analysis are valid. Using eq64b, we will reduce eq tal data. Takashi et al. (1978) conducted a series of
34f to frost heave tests in which the temperature of the

unfrozen part R0 was kept constant at 0.2-03 0C
d2 r = L-4(k2i al - koao0) higher than the freezing point of a sample so that

the speed V0 of a frost front no was kept nearly
-P30 V4dji d2 wo- vi). (70a) constant. Dividing eq 70b by d2Vo, we will reduce

eq 70b toSince al• and ao are related by eq 69d, we canexpress rasa function of Voandeither %oral.e= rVW' = d2' b/K21 ao VoI

will write eq 70a in two ways as +6121 -d 1wo. (72)

d2 r = Slcr0 + S2  (70b) Takashietal. (1978) calledj the "frostheaveratio."

= Sal + S4  (70c) Analyzingtheir dataTakashiet al.(1978) found
empiricallythat jisuniquelydeterminedby Vo for

where Si is given as a given applied pressure a. A typicalbehavior oft
vs. V0 obtained by them is reproduced in Figure 4

S, = bK21  (70d) whereacurveisdrawnthat approximatelyrepre-
sents their data points taken with their sample 2

S2 = (I - d- 1 d2) p3o Vowo (70e) under the applied pressure a = 304 kPa. In their
tests the temperature profile in the sample was not

53 - bK2i k21 b21 (70f) measuredand itisdifficult toassess the variability
of a& However, if %o is kept nearly constant and

- (I - d 1 d2) vii p0 VMo K2 1mainlydependsontao Vo-, then theirempirical
relationshipsbetween and Voarecomsistentwith

S4 =-[(d14d2 -kobj 1)(wo-vi) (70g) eq 72 as we will show below.
Since the second term on the right side of eq 72

WewtllexaminethevalueofS| foraspecalcasein is a given constant, • approaches asymptotically
which a vanishes and V0 is much less thanflo. The this constant as V0 becomes infinite. The value of
limiting value of Si as Vo approaches zero is given increases with the decreasing Vo until become
as infinite when Vo vanishes and an Ice layer grows.
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Figure 4. Frost heave ratio (%) vs. Vo (cm di) Figure 5. Frost heave ratio (%) vs. V1 (cm-1 d)
obtained empirially by Takashi et 4. (1978). obtained empirically by Tkabshi et al. (1978).

The curve g vs. Vo in Figure 4 is converted into the 2
curve vs. V1 in Figure5. Itisclear fromeq 72 that
the gradientof the curvein Figure 5 is proportional
toK21 ifeq72holdstrue. FromFigure5we find that 0 Tes A

thegradientof the curve tends to decrease withthe Is

increasing VO- ; namely, K21 is a decreasing fumc-
tion of V0.

We have derived eq 72 under the assumption A

that the speed of a frost front Vo is constant. There- 4
fore, eq 72 is not anticipated to hold true for the 1

transieit freezing in which V0 varies with time.
However, eq 72 may approximately hold true for
the transient case in which the change of V0 with
time is small. Analyzing the data on transient
freezing tests obtained by Akagawa (1990),btiyata
and Akagawa (1991) empirically found that j may
be uniquely determined by a 0 ' though data are
limited. Their data 4 of two tests (test A with a = 60
kPa and test B with a=110 kPa) vs. O.o are pre- % V-
sented in Figure 6 where a curve is drawn to show 0

the trend of the data points. Figure 6. Frost heave ratio (%) vs. aotVol (V c-n2 d)
A soil specimen of 8.5-m length was frzen obtained empirkaly by Miyuta and Akagawa (1.91).

from the bottom up with constant boundary tem-
peratures (Akagawa 1990). The data points (F, rates of change in V0 and o0r as described above.
C.Vo ) were taken during the time period from4 to From Figure 6 we find a trend similar to that of
45 hours after the start of the test. The speed VO Figure5: the gradient of th curve vsd ciW't-ends
decreased and %0 increased monotonically with to decrease with the increasing aoV 061, namely, K21
time; hence, the value otV"o increased monotoni- is a decreasing function of ao0-oW.
cally with time. In test A, for instance, V0 changed We have studied the steady growth of ice-rich
from 9.12 cm d7' at 4 hours to nearly zero at 45 frozensoilbyusingM 1 We have shown that there
hours while e0 changed from about 0.60C cm-1 at exists a traveling wave solution to the problem of
4 hours to about 1.5-C cm-I at 23 hours It is quite steadily growing ice-rich frozen soil and that this
interesting that eq 72 may hold true despite such solution is reduced to the solution to the problem
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AFI-ENDIX A: EXACT SOLUTION OF EQUATION 45

When kl(ý) is given by eq 40e, we will introduce a that a solution 7KX) is negative for X > I if it exists.
new independent variable X defined for n1 , a > no as Integrating eq A2, we obtain

X= I +(-no). I +T8.1>X> k1. (Al) In X = T 0r ITT-to- k AL)- dT. (A4)
Using X, we will reduce eq 45 to

Z= - - Since the integrand of eq A4 is continuous, a solution

dX (iX)- (nT k;' AL)0 W) M) exists. It is easy to see that the right side ofeq A2
satisfies aLipschitz condition with respect to Tbecause

Multiplying eq A2 by X- •/4, we will write eq A2 as the function A(I) possesses a continuous first deriva-
tive as assumed. Based on an elementatr theorem of

d TX-t• A =- (,nX)- X-P A(ao+ký'AL). ordinary differential equations (Sansone and Coni
dX 1964), we may conclude that eq A2 has a unique

(A3) negative solution 7X) for X > 1.
It follows from eq A2 that the unique solution of

Suppose that a solution 71X) of eq A2 exists. Simee eq A2 isdecreasing with x (or because the right
right side of eq A3 is negative, the function TX-"" is side of eq A2 is negative. We have shown that eq 45
a decreasing function of X. Therefore, 71X) must be has a unique and decreasing solution for n, k 4 k no.
negativeforX> I becauseT=OatX= 1. Wehavefound

15



APPENDIX B: APPROXIMATE SOLUTION OF EQUATION 45

As we have shown above (App. A), eq 45 has a We will seek approximate equations for eq B9 and
unique and decreasing solution. This implies that X (or B 10 when the following condition holds ame:
F) and Tare one-to-one. Treating A as a function of X,
we will write eq A2 as 118< I and P18 < 1. (BIi)

T(X) = X, W1 (1 - XP1-') + wXoI yX1 4' (B1) We found that the condition, eq B 11. holds true when
the steady growth of an ice layer occurs (Takeda and

where xro3 w, and Y are defined as Nakano 1990). When eq B 11 holds true, we may use an

xo= ko 1Lpgo Mo (B2) approximation (Nakano 1990) given as:

X -I = I + (-no). (B12)
1 = Oo + KOWo (B3)

x Using eq BI2, we will reduce eq B9 and B 10 to

Y(x) = v X-4+P-1)dX. M4) 7(4) = -(xi - - no)(B13)

We wil rewrite eq A2 = -W 1 + Xo (v + w1
1 PiV)

Z= - (qx)-OX, y,, ( -(i(B5- wiow 1
1 poi' (4 - n4 (B14)

For the calculation of v, X is approximated
where Yg is defined as by using eq BI2 as

Y1= i-nx4 (1hT+wov). (B6) X-01,0 = [ + Pi (4 - no)P. (B15)

Using eq B5, we will reduce eq B4 to When Vo is very small, from eq B13 T(E) is given as

Y = liti, V (B7) 71) = - X, (4- no). (B16)

v =- T v X-ft4Yj-dT. (BB) Substituting eq B 16 into eq B 15 we obtain

Jo X-011(- = (1 - Iwj'T). (B17)
Using eq B7, we will reduce eq B I to: NowViapproximated as

T ( 0=f pit (• - X 0m -') +oiX m'V . (B g) -=-1Tv [Y (1 - 1 f 4 ) 1-1d T. ( B IB)

Using eq B5 and B9, we obtain: ji

7'(O)x -x w'(Xi- Xo0 1' 0 + x0v. (Blo)
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"APPENDIX C: COMPUTATION OF I,

Using eq B5, we wil reduce eq 56b to -xiKioIj-woXo !T•i*•T T;
-xl IioIi = X(Kio /KI)YI-IdT. (Cl) j TI: T(l + xi ~IkT)dT

The term PITin eq B6 describes the effect of sensi- ffii T1(1 - ) (C3)
tive heat that is much less than xs. Also the term
xj'Iov in eq B6 is less than one. Therefore, the term where
xýj f( T + xov) is geerally less than one and we
may approximate Y, as *i = 01 MT

YI-I = 1 + ~il(fh T + xo0v). (0:) (iTI
S= I7 -" + *ilI dTI (C4)

Using eq 55b, 55c and C2, we will reduce eq Cl to: fo )
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